

	Roll	Nur	nbe	r
j				

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

STATE LEVEL NATIONAL TALENT SEARCH EXAMINATION - 2016

Class - X

Part - I

SCHOLASTIC APTITUDE TEST (SAT)

Time: 90 Minutes

പരീക്ഷാർത്ഥികൾക്കുള്ള നിർദ്ദേശങ്ങൾ :

Maximum Marks: 100

INSTRUCTIONS TO CANDIDATES :

Read the following instructions before you answer the questions. Answers are to be given in a SEPARATE OMR ANSWER SHEET provided inside this booklet. Break the seal and start answering the questions once asked to do so.

- Please write your ROLL NUMBER very clearly (only one digit in one block) as given in your Admission Card.
- There are 100 questions in this test. The questions are arranged in the following order:
 - Questions 1 to 40 belong to Science Subjects.
 - Questions 41 to 60 are on Mathematics Subjects.
 - Questions 61 to 100 are on Social Science.
- Select the most suitable answer for each question and completely darken the circle corresponding to the correct alternative as shown below.

Correct Method	Wrong Method
1 2 • 4	③⊗⊗

- 4. All questions carry ONE MARK each.
- There is no negative mark. Every correct answer will be awarded one mark.
- Do not write your name on any part of the question booklet or on the answer sheet.

ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാൻ തുടങ്ങുന്നതിന് മുമ്പ് താഴെ കൊടുത്തിരിക്കുന്ന നിർദ്ദേശങ്ങൾ സശ്രദ്ധം വായിക്കുക. ഉത്തരം നൽകേണ്ടത് ഒരു പ്ര**ത്യേക** ഉത്തരക്കടലാസിൽ ആണ്. നിർദ്ദേശത്തിനു ശേഷം മാത്രമേ സീൽ തുറക്കുവാനും, ഉത്തരം എഴുതുവാനും പാടുളളു.

- നിങ്ങളുടെ റോൾ നമ്പർ (ഒരു കള്ളിയിൽ ഒരു അക്കാ മാത്രാ) വൃക്തമായി നിങ്ങളുടെ പ്രവേശന പത്രത്തിൽ തന്നിരിക്കുന്നതു പോലെ എഴുതുക.
- ഈ പരീക്ഷാപുസ്തകത്തിൽ 100 ചോദ്യങ്ങളുണ്ട്. ചോദ്യങ്ങൾ താഴെ കൊടുത്തിരിക്കുന്ന പ്രകാരം ക്രമപ്പെടുത്തിയിരിക്കുന്നു
 - 1 മുതൽ 40 വരെയുള്ള ചോദ്യത്തർ ശാസ്ത്രത്തിൽ നിന്ന്.
 - 41 മുനൽ 60 വരെയുള്ള ചോട്യങ്ങൾ ഗണിത ത്തിൽ നിന്ന്.
 - 61 മുതൽ 100 വരെയുള്ള ചോദ്യങ്ങൾ സാമൂഹ്യ ശാസ്ത്രത്തിൽ നിന്ന്.
- ഓരോ്ചോദ്യത്തിനും ഉചിതമായ ഉത്തരം തിരഞ്ഞെടുത്ത് ശരിയായ ഉത്തരത്തെ സൂചിപ്പി ക്കുന്ന വൃത്തം മാത്രം താഴെ കൊടുത്തിരിക്കുന്ന വിധത്തിൽ പുർണ്ണമായി കറുപ്പിക്കുക.

ശരിയായ രിതി	തെറ്റായ രീതി
① ② ● ④	0886

- എല്ലാ ചോദ്യങ്ങൾക്കും ഒരു മാർക്ക് വീതം.
- ന്യൂന മാർക്ക് ഇല്ല ഓരോ ശരി ഉത്തരത്തിനും ഒരു മാർക്ക് വീതം ലഭിക്കും.
- നിങ്ങളുടെ പേര് ചോദ്യ പുസ്തകത്തിന്റെയോ ഉത്തരക്കാലാസിന്റെയോ ഒരു ഭാഗത്തും എഴുതു വാൻ പാടില്ല.

SCERT 2016

The copyright of the contents of this booklet rests with the SCERT and no part of it should be used by anybody in any manner whatsoever without the prior permission of the SCERT. The items are prepared with best expertise. In case of any dispute the opinion of the experts appointed by SCERT will be final.

State Level National Talent Search Examination – 2016 Scholastic Aptitude Test

1.	The enzymes commonly called 'Genetic Scissors' (1) Ligases (2) Lipases Answer (3) Solution The enzymes commonly called genetic scissor's a	(3)Restriction endonucleases	(4) Proteases
2.	Chooses the group that contains fungi only (1) Euglena, lichen (2) Yeast, mushroom Answer (2) Solution	(3)Anabaena, Amoeba	(4) Paramecium, mycoplasma
	Choose the group that contains fungi only		
3.	Climbers grow towards and around a support is a (1) Hydrotropism (2) Haptotropism Answer (2) Solution Climbers grow to wards and around a support is	(3)Geotropism	(4) Phototropism
4.	Select the correct statement regarding the arrangen		chain of haemoglobin
	(1) Same in man and rat	(2) Same in man and chimpanzo (4) same in man and gorilla	
	Select the correct statement regarding the arrang	gement of amino ad in beta chai	n of hemoglobin
5.	The gas responsible for ozone depletion is (1) Nitrogen and argon (2) Carbon dioxi Answer (4)	ide (3)Carbon monoxide	(4) Chlorofluorocarbons
	Solution		
6.	The gas responsible for O_3 depletion Chromosomes are composed of (1) DNA and protein (2) RNA and lipi Answer (1) Solution Chromosomes are composed of	ids (3)Ribosomes and lipid	ds (4) DNA and lipids
7.	Choose the immune response of basophil (1) Engulfs and destroys the bacteria (2) Produces chemical substances that destroy for (3) Dilates the blood vessels (4) Produces chemical substances needed for interpretation Answer (1) Solution Choose the immure response of basophil	-	
8.	Decreases in the production of dopamine causes (1) Parkinson's (2) Meningitis Answer (1) Solution Decrease in the production of dopamine causes	s (3)Alzheimer's	(4)Epilepsy
9.	The excretory organ in cockroach is (1) Kidney (2) Malpighian tubules Answer (2) Solution	(3) Contractile vacuoles	s (4)Nephridia

Excretory organ in cockroach is

(1) Repeat, Red (3) Recycle, Red Answer (4) Solution	uce, Resale use, Repeat	·	t			
(1) Epithelial tiss Answer (1) Solution	sue	(2) Cardiac tissu	ue	(3) Muscular ti	issue	(4) Connective tissue
a semi permeab (1) Plasmolysis Answer (3) Solution Movement of wa	le membrane is	s called (2) Endocytosis rom a region of it	-	(3) Osmosis		(4) Diffusion
(1) Connect bon (3) Smoothen bo Answer (2) Solution	es to bones ound surfaces		(2) Con (4) Fibro	nect bones to r ous tissue with		pility
(1) Light energy (3) Hydrogen is Answer (3) Solution	is converted intadded to carbo	to chemical energ n dioxide	ЭУ			rogen and oxygen
(a) Electron: (b) Each she (c)Electron, (d) Energy Select the corre (1) C and (d) Answer (1) Solution The energy of e	s are revolving a sell is associated while revolving of the shells dect alternative (2) (b) a self-tree (2	around the nucle I with definite ame through a particu creases as their of and (c) icular cell is quar	us in spe ount of e ular shell distance (3) (a) a	ecified paths ca energy I can increases form nucleus in	alled orbits or decrea	s/shells ases its energy
(1) Isobars are a (3) Isotones are Answer (3) Solution Eg: Isobars -	atoms of same ϵ atoms of same $\epsilon_{18}^{40} Ar$	elements elements $20^{40} \ Ca$	(2) Isoto			
	(1) Repeat, Red (3) Recycle, Red Answer (4) Solution The three R's to Gland are modif (1) Epithelial tiss Answer (1) Solution Glands are mod Movement of wa a semi permeable (1) Plasmolysis Answer (3) Solution Movement of wa semi permeable Which of the foll (1) Connect bon (3) Smoothen bo Answer (2) Solution Which of the foll (1) Connect bon (3) Smoothen bo Answer (2) Solution Which of the foll (a) Electron (b) Each she (c) Electron (d) Energy Select the corre (1) C and (d) Answer (1) Solution The energy of e Energy of shells Which of the foll (1) Isobars are a (3) Isotones are Answer (3) Solution Eg: Isobars - Isotopes -	(1) Repeat, Reduce, Resale (3) Recycle, Reuse, Repeat Answer (4) Solution The three R's to save environm Gland are modified from of (1) Epithelial tissue Answer (1) Solution Glands are modified from of Movement of water molecules fa semi permeable membrane is (1) Plasmolysis Answer (3) Solution Movement of water molecules fsemi permeable membrard is compared to the following statement (1) Connect bones to bones (3) Smoothen bound surfaces Answer (2) Solution Which of the following statement (1) Light energy is converted infinity (3) Hydrogen is added to carbotanswer (3) Solution Select the process that occurs in (1) Light energy is converted infinity (2) Hydrogen is added to carbotanswer (3) Solution Select the process that occurs in (2) Electrons are revolving (3) Hydrogen is added to carbotanswer (3) Solution Select the correct alternative (1) Each shell is associated (c) Electron, while revolving (d) Energy of the shells de Select the correct alternative (1) C and (d) (2) (b) answer (1) Solution The energy of electron in a part Energy of shells 1/Distance b/w Which of the following statement (1) Isobars are atoms of same (3) Isotones are atoms of same (3) Isotones are atoms of same (3) Isotones are atoms of same Answer (3) Solution Eg: Isobars - 18 ⁴⁰ Ar Isotopes - 11 ⁴¹ H	(1) Repeat, Reduce, Resale (3) Recycle, Reuse, Repeat Answer (4) Solution The three R's to save environment represent Gland are modified from of (1) Epithelial tissue Answer (1) Solution Glands are modified from of Movement of water molecules from a region of it a semi permeable membrane is called (1) Plasmolysis (2) Endocytosis Answer (3) Solution Movement of water molecules from a region of it semi permeable membrard is called (1) Connect bones to bones (3) Smoothen bound surfaces Answer (2) Solution Which of the following statement is correct about (1) Connect bones to bones (3) Smoothen bound surfaces Answer (2) Solution Which of the following statement is correct about (1) Light energy is converted into chemical energing (3) Hydrogen is added to carbon dioxide Answer (3) Solution Select the process that occurs in dark reaction Which of the following statements DO NOT mate (a) Electrons are revolving around the nucle (b) Each shell is associated with definite am (c)Electron, while revolving through a particut (d) Energy of the shells decreases as their of Select the correct alternative (1) C and (d) (2) (b) and (c) Answer (1) Solution The energy of electron in a particular cell is quarenergy of shells 1/Distance b/w nucleus & shell Which of the following statements are NOT COR (1) Isobars are atoms of same elements (3) Isotones are atoms of same elements (3) Isotones are atoms of same elements Answer (3) Solution Eg: Isobars - 18 ⁴⁰ Ar 20 ⁴⁰ Ca Isotopes - 1 ¹ H 1 ² H	(3) Recycle, Reuse, Repeat Answer (4) Solution The three R's to save environment represent Gland are modified from of (1) Epithelial tissue (2) Cardiac tissue Answer (1) Solution Glands are modified from of Movement of water molecules from a region of its higher a semi permeable membrane is called (1) Plasmolysis (2) Endocytosis Answer (3) Solution Movement of water molecules from a region of its higher semi permeable membrand is called Which of the following statement is correct about tendons (1) Connect bones to bones (2) Con (3) Smoothen bound surfaces (4) Fibrial Answer (2) Solution Which of the following statement is correct about tendons Select the process that occurs in dark reaction (1) Light energy is converted into chemical energy (3) Hydrogen is added to carbon dioxide Answer (3) Solution Which of the following statements DO NOT match which (a) Electrons are revolving around the nucleus in spe (b) Each shell is associated with definite amount of (c) Electron, while revolving through a particular shell (d) Energy of the shells decreases as their distance Select the correct alternative (1) C and (d) (2) (b) and (c) (3) (a) a select the correct alternative (1) C and (d) (2) (b) and (c) (3) (a) a select the process of select the process of same elements (2) Isote (3) Isotones are atoms of same elements (2) Isote (3) Isotones are atoms of same elements Which of the following statements are NOT CORRECT? (1) Isobars are atoms of same elements (3) Isotones are atoms of same elements (4) Isoton Eg: Isobars - 18 Ar 20 40 Ca Isotopes - 1 Ar 20 40 Ca	(1) Repeat, Reduce, Resale (3) Recycle, Reuse, Repeat Answer (4) Solution The three R's to save environment represent Gland are modified from of (1) Epithelial tissue Answer (1) Solution Glands are modified from of Movement of water molecules from a region of its higher concentration a semi permeable membrane is called (1) Plasmolysis (2) Endocytosis (3) Osmosis Answer (3) Solution Movement of water molecules from a region of its higher none to a region permeable membrane is called (1) Plasmolysis (2) Endocytosis (3) Osmosis Answer (3) Solution Movement of water molecules from a region of its higher none to a region permeable membrard is called Which of the following statement is correct about tendons? (1) Connect bones (2) Connect bones (3) Smoothen bound surfaces Answer (2) Solution Which of the following statement is correct about tendons? Select the process that occurs in dark reaction (1) Light energy is converted into chemical energy (3) Hydrogen is added to carbon dioxide Answer (3) Solution Select the process that occurs in dark reaction Which of the following statements DO NOT match which the postulates (a) Electrons are revolving around the nucleus in specified paths ca (b) Each shell is associated with definite amount of energy (c) Electron, while revolving through a particular shell can increases (d) Energy of the shells decreases as their distance form nucleus is select the correct alternative (1) C and (d) (2) (b) and (c) (3) (a) and (c) Answer (1) Solution The energy of electron in a particular cell is quantized Energy of shells 1/Distance b/w nucleus & shell Which of the following statements are NOT CORRECT? (1) Isobars are atoms of same elements Answer (3) Solution Eg: Isobars - 18 ⁴⁰ Ar 20 ⁴⁰ Ca Isotopes - 1 ¹ H 1 ² H	(1) Repeat, Reduce, Resale (3) Recycle, Reuse, Repeat Answer (4) Solution The three R's to save environment represent Gland are modified from of (1) Epithelial tissue Answer (1) Solution Glands are modified from of (1) Epithelial tissue Answer (1) Solution Glands are modified from of Movement of water molecules from a region of its higher concentration to a region a semi permeable membrane is called (1) Plasmolysis (2) Endocytosis (3) Osmosis Answer (3) Solution Movement of water molecules from a region of its higher none to a region of its light in the following statement is correct about tendons? (1) Connect bones to bones (2) Connect bones to muscles (3) Smoothen bound surfaces Answer (2) Solution Which of the following statement is correct about tendons? Select the process that occurs in dark reaction (1) Light energy is converted into chemical energy (3) Hydrogen is added to carbon dioxide Answer (3) Solution Which of the following statements DO NOT match which the postulates of Bohr's (a) Electrons are revolving around the nucleus in specified paths called orbits (b) Each shell is associated with definite amount of energy (c) Electron, while revolving through a particular shell can increases or decreated of the shell is associated with definite amount of energy (c) Electron, while revolving through a particular shell can increases or decreated of the shell is associated with definite amount of energy (c) Electron, while revolving through a particular shell can increases or decreated orbits (b) Each shell is associated with definite amount of energy (c) Electron shell stopped or the shells decreases as their distance form nucleus increases Select the correct alternative (1) C and (d) (2) (b) and (c) (3) (a) and (c) (4) (b) a Answer (1) Solution The energy of electron in a particular cell is quantized Energy of shells 1/Distance b/w nucleus & shell Which of the following statements are NOT CORRECT? (1) Isobars are atoms of same elements (3) Isotopes are atoms of differe Answer (3) Solution

- 17. Which of the following represents the sequence in which the given compounds are arranged in the increasing order of the electronegative difference of their component elements? CH 4, NaCl, CO, Na 2 O, MgCl2
 - (1) $CH_4 < MgCl_2 < CO < NaCl < Na_2 O$ (2) $Na_2 O < CO < MgCl_2 < NaCl < CH_4$
- - (3) $MgCl_2 < Na_2O < CO < CH_4 < NaCl$ (4) $CH_4 < CO < MgCl_2 < NaCl < Na_2O$

Answer (4)

Solution

e.n: O > CI > C > H > Mg > Na3.5 3 2.5 2.1

- 18. Water is a compound with relatively low molecular mass (18g mol^{-1}). But it exists as a liquid at room temperature. This is because
 - (1) Water molecules have angular geometry
 - (2) Elect negatively difference between hydrogen and oxygen is less
 - (3) Water hydrogen and oxygen is less
 - (4) Water is a universal solvent

Answer (3)

Conceptual

- 19. Which of the following represents pairs of metalloids?
 - (a) Si & Sb
- (b) Pb & Sb
- (c) Ru & Rh
- (d) Ge & As

- (1) (b) and (d)
- (b) (a) and (c)
- (c) (b) and (c)
- (d) (a) and (d)

Answer (4) Solution

Metalloids: Si

Ge As Sb

Tc Pο

- 20. Which of the following reactions requires the highest temperature to occur?
 - (1) $N_2 + O_2 \rightarrow 2NO$

- (2) $2NO + O_2 \rightarrow 2NO_2$
- (3) $NH_4 NO_2 \rightarrow N_2 + 2H_2O$

 $(4) 4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$

Answer (1)

Solution

Conceptual

21. The total number of elections in 1kg glucose $(C_6 H_{12} O_6)$ is [Molecular mass of glucose is 18 u]

(1)
$$6.022 \times 10^{23}$$

(2)
$$1.8 \times 10^5$$

(3)
$$3.346 \times 10^{21}$$

(4)
$$3.2 \times 10^{26}$$

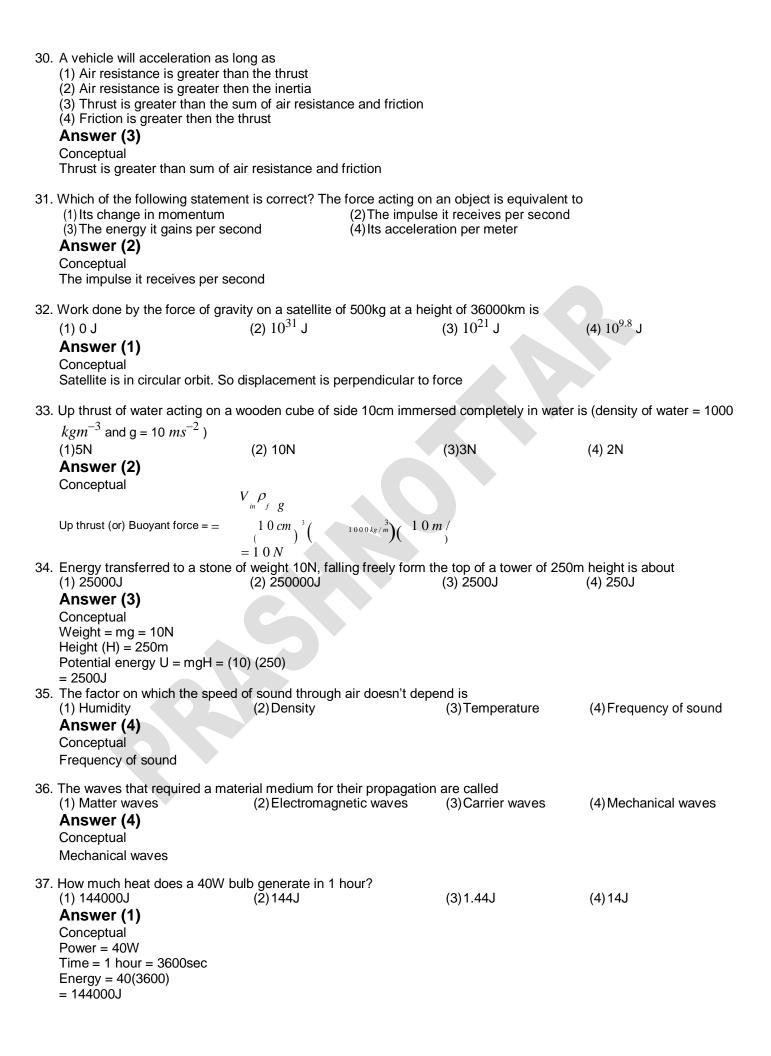
Answer (4)

Solution

Glucose=
$$\frac{1000}{180}$$
Molecules =
$$\frac{1000}{180} \times na$$

No of electrons =
$$\frac{1000}{180} \times na \times 96 = 3.2 \times 10^{26}$$

- 22. Which of the following are NOT CORECT for a gaseous reversible reaction when pressure is increased?
 - (a) Distance between gaseous molecules decreases
 - (b) Number of molecules per unit volume decreases
 - (c) Reaction proceeds in the direction in which there is increases in number of moles
 - (d) Reaction proceeds in the direction in which there is decrease in number of moles Selection the correct alternative
 - (1) (a) and (d)
- (2) (b) and (d)
- (3) (a) and (c)
- (4) (b) and (c)


Answer (4)

Solution

It is explained bases on lee chatelier principle conceptual

23.	In which of the following (a) Sliver nitrate (1) (b) and (d)		xidized? (c) Magnesium sul (3) (b) and (c)	phate (d) Cop (4) (a) :	oper sulphate and (d)
	Answer (4) Solution	(2) (4) 4.14 (5)	(0) (0) and (0)	(1)(4)	a.i.a (a)
	Electron chemical serie	s: $Li > Na > a > Mg >$	Al > Zm > Fe > Sn >	Pb > M > Cu > Hg	> Ag > Au
24.	When the reaction Pb (NO_3) ₂ $\rightarrow 2PbO + N$			e reactants and products ir
	the balanced reaction w (2) 4, 2, 1, 2 Answer (2) Solution	(2) 2, 2, 4, 1	(3) 2, 4, 1, 2	(4) 4, 2, 2, 2, 1	
	$2 Pb (No_3)_2 \rightarrow 2 Pb$	$OO + 4NO_2 + O_2$			
25.	What is the volume of N_2	gas formed at STP who	en 63g of $(NH_4)_2$ Cr	$_2O_7$ is thermally deco	emposed according to the
	equation given below? (1) 5.6L Answer (1) Solution	(Atomic mass of Cr = 5 (2) 11.2L		16) (<i>NH</i> ₄) ₂ <i>Cr</i> ₂ <i>O</i> ₇) 22.4L	$\rightarrow N_2 + 4H_2 O + Cr_2 O_3$ (4) 44.8L
	$(NH_4)_2 Cr_2 O_7 \rightarrow R$ $m = \frac{63}{2} = 0.25$	$N_2 + 4H_2 O + Cr_2 C$	3	AY	
	252				
	1 mole of N_2 at STP = 2				
	0.25 mole of N_2 at STP	= 5.6			
26.	What is the number of s (1) 7 Answer (1)	– electrons present in (2) 1	a chromium atom? (A		- 24) (4) 5
	Solution $(r = 1s^2, 2s^2, 2p^6, 3s^2, 2p^6, $	2 6 4 1 245)			
27	The two elements X and		nce electrons respectiv	vely What will be the	most probable formula
21.	of the compound former		ioc creations respectiv	voly. What will be the	Those probable formula
	(1) <i>X</i> ₇ <i>Y</i> ₅ Answer (4)	(2) X_5Y_7	(3)) <i>X</i> ₃ <i>Y</i>	$(4) XY_3$
	Solution	Latera	Valence		
	No of valence e	electrons	Valency + 3		
	Y 7		- 1		
	x^{+3}, y^{-1}				
28.	xy₃The average acceleration(1) Velocity – speed grading(3) Speed – time graph	iph (2) V	me interval 't' is given elocity – time graph elocity – displacemen		
	Answer (2) Conceptual	(,)		. g.sp.:	
29.	(3) Inwards and at(4) Opposite to the	of motion at 45° to the direction or right angles to the dire	of motion	s a force which is	
	Answer (3) Solution				

Inwards and at right angles to the direction of motion

38. Three bulbs are rate	ed 40W, 60W and 10	0W. Which bulb will glov	v brightly if they are co	nnected in series across a
220V source? (1) 40W Answer (1) Conceptual	(2) 60W	(3) 100W	(4) All will glow	
\$ \$ \$	<u>)</u> 			
Rater power $P = 40W, R = V_2$	-)			
$P_2 = 60W, R_2 = V$				
$P = 100W, R = \frac{1}{3}$	$\frac{7^2}{00}$			
Voltage is divided in <i>B</i>	the ratio of resistance $P': P' = i^2 R: i$	$ \begin{array}{l} ce \\ i^2 R : i^2 R \\ 2 & 3 \end{array} $		
Power generated =	$R_1: R_2: R_3$			
=	$=\frac{1}{40}:\frac{1}{60}:\frac{1}{100}=15$	5:10:6		
∴Bulb of 40w glow		f mutual industion is		
39. A device which use (1) AC generator Answer (4) Conceptual Transformer		generator	(3) Induction coil	(4) Transformer
	vigation Satellite Syst	em (IRNSS) has a grou	p of satellites	
(1) 3 Answer (3)	(2)5		(3)7	(4)9
		tition, 120 five – digit nu		low many five – digit
numbers can be ma (1) 120	ade using the digits 0 (2) 100	, 1, 2, 3, 4 without replet	ion? (3) 96	(4) 24
Answer (3) Solution			(6) 66	()
	$4 \times 3 \times 2 \times 1 = 96$			
Zero can't come at	1 st place, so 4 choice	es		
	3 . 1 . 1			

42. In the arithmetic sequence $\frac{3}{4}$, $1\frac{1}{2}$, $2\frac{1}{4}$,... at which position does a perfect square appear first?

(1) 192 (2) 108 (3) 48 (4) 12

Answer (2)
Solution

$$\frac{3}{4}, \frac{6}{4444}, \frac{9}{4444}, \frac{12}{4444}$$
 12th term

	ne sum of the first 40 terms of th	e arithmetic sequence 11,	21, 31 then the sum	of the first 40
(1) 1600	(2) 820	(3) 780	(4) 40	

Answer (2)

Solution
$$S_{40} = \frac{40}{2} (2 \times 11 + 39 \times 10)$$

$$S_{40} = \frac{2}{40} (2 \times 12 + 39 \times 11)$$

$$S_{40} - S_{40} = \frac{40}{2} (2 \times 1 + 39 \times 1) = 820$$

44. The difference of the squares of two natural numbers is 101. What is the sum of their squares? (1)5000(2)5100(3)5101(4)5102

Answer (3)

Solution

$$a^{2}-b^{2} = (a-b)(a+b) = 101 \times 1$$

 $a+b = 101$
 $a-b = 1$
 $a = 51, b = 50$

45. Each three – digit numbers is written in a paper slip and put in a box. If one slip is drawn form it, what is the probability of its being a multiple of 9 which ends in 5?

$$(1)\frac{1}{0}$$

(2)
$$\frac{1}{18}$$

(3)
$$\frac{1}{90}$$

(4)
$$\frac{1}{100}$$

Answer (3)

Solution

Multiple of ends in s mean add multiple of 45

$$a = 135, d = 90; an = 945$$

$$945 = 135 + (n-1)d$$
; $d = 90$

$$=> n = 10$$

$$\therefore \text{ Probability } \stackrel{=}{\overset{10=1}{-}} \frac{}{900} \frac{}{90}$$

46. What number added to the polynomial $3x^2 +$ 5x gives the square of a first degree polynomial?

(1)
$$\frac{25}{12}$$

(2)
$$\frac{25}{24}$$

$$(3)\frac{25}{36}$$

$$(4)\frac{25}{48}$$

Answer (1)

Solution

Solution
$$3\left(x^{2} + \frac{5x}{3}\right) = 3\left(x^{2} + \frac{5x}{36} + \frac{25}{2}\right) - 3x \frac{25}{36}$$

$$\therefore Ans = \frac{25}{12}$$

47. In the polynomial $p(x) = x^2 - 10x + 2$ what number should be taken as x to get the least possible number at p(x)?

(1) 10

$$(4) - 5$$

Answer (2)

Solution

$$x^{2} - 10x + 2 = x^{2} - 10x + 25 - 23 = (x - 5)^{2} - 23$$
 Minimum at x = 5

48. If all real numbers	are taken as x, what is the smalle	est number got as $ x-1 + x-2 $	2 + x - 4 ?
(1) 1	(2) 2	(3) 3	(4) 4
Answer (2)			
Solution			
x-1 + x-2 + x	x - 4 is minimum at $x = s$		

49. The areas of two squares are in the ratio a: b and their perimeters are in the ration b: 8a. What is the ratio of their sides?

Solution

$$\frac{A}{A_2} = \frac{a}{b} \frac{P}{P_2} = \frac{b}{8a}$$

∴ Smallest value = 3

$$\Rightarrow \frac{a_2}{a_2} = \frac{a}{b}$$

$$= \begin{vmatrix} a & (b)^2 \\ - & |b| \\ 8a \end{vmatrix}$$

$$= \begin{vmatrix} a & 1 \\ - & |a| \end{vmatrix}$$

$$\Rightarrow \frac{a}{b} = \frac{1}{4}$$

50. The sum of a number and its reciprocal is 4. What is their difference?

(1)
$$\sqrt{2}$$

(2)
$$\sqrt{\beta}$$

(3)2
$$\sqrt{2}$$

(4)2
$$\sqrt{3}$$

Answer (4)

Solution

$$x + \frac{1}{x} = 4$$

$$x - \frac{1}{x} = \sqrt{\left(x + \frac{1}{x}\right)^2 - 4}$$

51. Which of the polygons given below cannot be drown by joining the numbers on a clock?

(1) Equilateral triangle

Answer (2)

Solution

12 is divisible by 2, 3, & 6 but net by 5 regular pentagon

52. The angles of a cyclic quadrilateral are in one of the ratios given below. Which is it?

(1) 1:2:3:4

Answer (2)

Solution

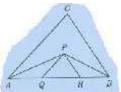
If ratio of angle are a: b: C: d then a+c must equal to b+d so 2: 1: 3: 4

53. The angles of a 15 -sided polygon are in arithmetic sequence. Which of those given below is an angle of this polygon?

(1)
$$128^{\circ}$$

(2)
$$130^{\circ}$$

(4)
$$156^{\circ}$$


Answer (4)

Solution

$$\frac{15}{2}(2\ a + 14\ d\) = 180 \times 13$$

$$\Rightarrow$$
 $a + 7 d = 156$

54. The bisectors of $\angle A$ and $\angle B$ of the triangle ABC meet at P and PQ, PR are parallel to AC and BC

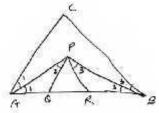
The perimeter of triangle PQR is 30 centimeters. What is the length of AB? (1) 20

(2)25

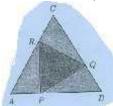
(3) 30

(4)45

Answer (3)


Solution

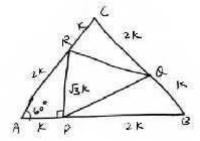
$$PQ \parallel AC$$


$$=>PQ=AQ$$

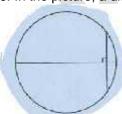
Similarly, PR = BR

∴ AB=30

55. ABC is an equilateral triangle and the points P, Q, R divided to sides AB, BC, CA in the ratio 1: 2


If the area of triangle PQR is 60 square centimeters, what is the area of triangle ABC?

Answer (1)


Solution

$$\frac{ar \Delta ABC}{ar \Delta PQR} = \left(\frac{AC}{PR}\right)^{2}$$
$$= \left(\frac{3K}{\sqrt{3K}}\right)^{2} = 3$$

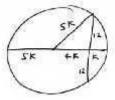
$$\therefore ar \Delta ABC = 180$$

56. In the picture, a diameter of the circle and a chord perpendicular to it are drawn

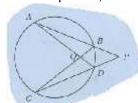
The length of the chord is 24 centimeters and it cuts the diameter in the ratio 9: 1. What is the diameter in counters?

(1)20

(2) 30


- (3)40
- (4) 60

Answer (3)


Solution

3k = 12

- \Rightarrow k = 4
- \Rightarrow : d = 10k = 40

57. In the picture, chords AB and CD of the circle are extended to meet at P and the chords AD and BC intersect at Q

The central angle of the smaller arc AC is 120° and the central angle of the smaller arc BC is 30° what are $\angle APC$ and $\angle AQC$?

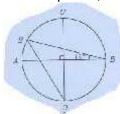
(1) 15° , 60°

(2) 45° , 75°

(3) $40^{\circ},80^{\circ}$

(4) 50°,80°

Answer (2) Solution


Angle made by AC at circumference

$$\frac{120^{\circ}}{2} = 60^{\circ}$$

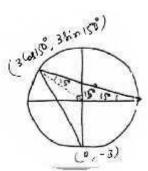
 \therefore 45 ° and 75°

58. In the picture, AB and CD are diameters of the circle and E is a point on the circle

The diameter of the circle is 6 centimeters. What is the length of DE?

(1) $\sqrt{3}$

(2) $\sqrt[3]{3}$


(3) √3

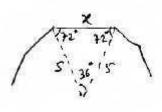
(4) **6**3

Answer (2) Solution

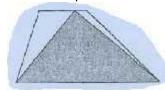
DE = distance between (0, -3) and $(-3\sqrt{3}, \frac{3}{3})$

(2 2)

- $59. \ \text{An exterior angle of a regular polygon is } 36^{\circ} \ \text{and one of its longest diagonals is 10centimeters what is its perimeter?}$
 - (1) 100 $\sin 18^{\circ}$
- (2) $100 \sin 36^{\circ}$
- (3) 100 $\sin 54^{\circ}$
- (4) 100 $\sin 72^{\circ}$

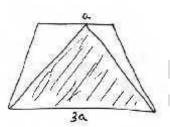

Answer (2) Solution

$$\frac{360^{\circ}}{n} = 36^{\circ}$$


$$=> n = 10$$

$$\frac{x}{\sin 36^{\circ}} = \frac{x}{\sin 72^{\circ}}$$

$$=> x = \frac{5}{2\cos 36^{\circ}} = \frac{5}{2}\sin 54^{\circ}$$


60. In the trapezium shown below, the longer of the parallel sides is three times the shorter

If a point is marked within the trapezium, what is the probability that it would be within the shaded triangle?

Answer (3) Solution

$$\frac{\frac{1}{2} \times h \times 3a}{\frac{1}{2} \times h \times (3a+a)} = \frac{3}{4}$$

61. The practice of land grants in India was started by

(1) Cholas

(2) Pandyas

(3) Satavahanas

(4) Gupatas

Answer (4)

62. Rearrange chronologically

(a) Fall of Bastille

(3) National Assembly

(1) a b c d

(2) c a b d

(3) b c a d

(4) dabc

(2) Oath of Tennis court

(d) Execution of Louis X VI

Answer (3)

63. Which among the following is the holy book of Buddhism?

(1) Purvas

(2) Angas

(3) Tripitakas

(4) Zend Avesta

Answer (3)

64. Which among the following is not correctly matched

(1) Mrichckatikam – Sudraka

(3) Devichandraguptam - Bharavi

(2) Svapnavasavadatta - Bhasa

(4) Dasakumaracharita – Dandi

Answer (3)

65. Who among the following was the God of 'Marutam' as recorded in old Tamil literature?

(1) Cheyon

(2) Mayon

(3) Kottavai

(4) Ventan

Answer (4)

66. Which is the correct chronological order of the following events?

(a) Quit India Movement

(c) Jallianwala Bagh Tragedy

(b) Salt Satyagraha (d) Naval Mutiny

(1) a b d c

(2) b c a d

(3) c b a d

(4) d c b a

Answer (3)

67. The term 'tithe' stands for

(1) Tax levied by the Church

(2) Tax levied by the state

(3) Tax levied by the feudal lord (4) Tax on animal

Answer (1)

68.	Mahadandanayaka und (1) Revenue Answer (3)	er the Gupat rule was ta (2) Police	king car of	(3) Judici	ary (4) Army
69.	Terms 'Zat' and 'Sawar' (1) lqta system Answer (4)	are related to (2) Jagirdari system	(3) Ryotwari s	system (4	4) Mansabdari system
70.	'The Fat Map' was (1) An atom bomb Answer (1)	(2) A ship (3) A co	ode name of the	e Gestapo	(4) Name of an autobiography
71.	Which among the follow (1) Sivaji (2) Kris Answer (3)	ring is connected with the hna Deva Raya	e idea of 'Villag (3) Chola adm		(4) Sultanate of Delhi
72.	The film 'Grand Illusion' (1) The French Revoluti (3) The First World War Answer (3)	on	(2) The Russi (4) the Secon		
73.	(2) The West coast(3) The Ganga rive	ra river between Sadiya	and Dhubri	l water Way	1?
74.	The industries which sup (1) Consumer good indu (3) Footloose industries	ustries	v materials for (2) Basic indu (4) Agro – bas	stries	
	Answer (2)				
75.	The finest iron ore with (1) Hematite Answer (2)	more the 70% iron conte (2) Magnetite	ent is (3)Limonite	(4	1) Siderite
76.	Manikaran in Himachal (1) Geo – thermal energ (3) Nuclear energy proje Answer (1)	gy project	(2)Thermal p (4)Hydel pow		
77.	Jhumming refers to (1) Primitive subsistence (3) Intensive subsistence Answer (1)		(2) Commerci (4) Dairy farm		
78.	(ii) Species with a small (iii) Species with are fou	the danger of extinction population and only in some particulant found after searches (ii) Endangered species ies (ii) Rare species	ar areas usuall in known or like s (iii) E: s (iii) Endangere	y isolated by ely areas wh ktinct specie ndemic spec	y Geographical barriers here they may occur s (iv) Endemic species hies (iv) Extinct species hies (iv) Rare species

79.	Which among the following are consider (1) Forests (3) Oceanic resources beyond 200km for Answer (3)			(2) Wildlife (4) All oceanic r	resources
80.	Identify the country which is large then I (1) Canada (2) USA Answer (3)		maller the (3) Aus		(4) China
81.	In the Northern Plains 'Kankar' formation (1) Khadar (2) Bha Answer (2)	•	(3) Bha	bhar	(4) Tarai
82.	Match the following and choose the corr (a) Malabar Coast (i) Paradip (b) North Circar (ii) Chennai (c) Coromandal Coast (iii) Kochi (d) Konkan Coast (iv) Mumbai (1) A - i B - ii C - iv D - iii (3) A - iv B - iii C - ii D - I Answer (4)	rect combination (2) A - i B - ii C - iii D - (4) A - iii B - i C - ii D -	– iv – iv		
83.	One among the following features is not (1) 1500 km in length (3) Know as Dakshin Ganga Answer (1)	related to river Godavar (2) Originates from mak (4) the largest peninsula	nabalesw		
84.	'Loo' is a phenomenon in India during (1) Hot weather season (3) South west monsoon season Answer (1)	(2) Cold weather seaso (4) North east monsoon			
85.	Fiscal deficit may leas to (a) Increased debt (c) Current account deficit (1) a, b and c are correct Answer (2)	(b) Interest payments o (d) Capital formation ald (2) c and d are correct	one	nd c are correct	(4) only d is correct
86.	Mudra Yojana provides financial assista (1) Exports only (3) Micro and small entrepreneurs Answer (3)	nce to (2) Big industrialists onl (4) Scientific experimen			
87.	Stand – up India scheme is promoted by (1) SIDBI (2) NAE Answer (1)		(3) SBI		(4) RBI
88.	Second generation economic reforms m (1) Commodity market reforms (3) Financial sector reforms Answer (2)	neans (2) Reforms introduced (4) Reforms in factor ar		narkets	
89.	Goods and Service Tax (GST) consists (a) Central GST (b) State GST (1) a only (2) b only Answer (4)	(c) Interstate GST	n a and b		

90.	W.T.O is a (1) Multilateral trade negotiation system (2) (2) Bilateral trade negotiation system (3) Forum for trade agreements between LDCs (4) Forum for trade agreements between developed countries Answer (1)					
91.	(1) Rate at which commercial banks lend to Central Bank (2) Rate at which central banks lend to commercial banks (3) Rate at which governments lands to NBFI is (4) Rate at which governments land to farmers Answer (1)					
92.	2. Personal income is estimated by (1) Dividing national income by population (2) Adding all factor incomes (3) Adding all factor incomes and transfer payments (4) Adding all factor incomes minus transfer payments Answer (3)					
93.	The system of power sharing by (1) Social Government (3) Local Self Government	different groups (2) Community (4) Coalition Go	government			
	Answer (2)					
94.	The Article to the Indian Constitut(1) 246	ution which deal (2)245	s with the Panch	ayats (3) 244		(4) 243
	Answer (4)					
95.	The state in which 'Kittiko – Hac (1) Andhra Pradesh	hchiko' Moveme (2) Karnataka	ent was started?	(3) Tele	engana	(4) Maharashtra
	Answer (2)					
96.	Identify the secular states (1) Sri Lanka and India	(2) Pakistan an	d Ireland	(3) Indi	a and Nepal	(4) Britan and Afghanistan
	Answer (3)					
97.	Which of following is not a featu (1) Permanently appointed (3) Politically not neutral	re of Bureaucrad	(2) App	ointed o	n the basis of qu eir work	alification
	Answer (3)					
98.	Few subjects in the Union List, S (a) Currency (b) Edu (1) b and d (2) a ar	cation	oncurrent List are (c) Foreign Affa (3) a and c		pelow. Identify th (d) Forest (4) b and	e concurrent subjects
	Answer (1)					
99.	Apartheid means (1) Religious discrimination (3) Caste discrimination		(2) Communal (4) Racial discri			
	Answer (4)					
100	. Which part of the Constitution of (1) Part – II (2) Part Answer (2)		Fundamental Du (3) Part – IV	uties?	(4) Part – IV A	